Water Balance Modeling

by

Craig H. Benson, PhD, PE, DGE

Geological Engineering
University of Wisconsin-Madison
Madison, Wisconsin 53706 USA

chbenson@wisc.edu

18 April 2011

©University of Wisconsin-Madison 2011

Steps in Water Balance Modeling

- 1. Develop conceptual model
- 2. Select software
- 3. Collect and organize data
- 4. Implement software (input and run)
- 5. Evaluate and report on output.

Conceptual Model

Conceptual Model

1. What is the cover profile?

- Monolithic or capillary barrier design
- Layer types and properties

2. Vegetated or non-vegetated?

- Vegetation normally required for water management and erosion control
- What type of vegetation? Grasses, shrubs, trees?

3. What is the surface boundary? Normally an atmospheric "flux" boundary is used

4. What is the lower boundary?

- Unit gradient at base
- Include waste?

Effect of Vegetation

- Parametric simulations conducted by Winkler (1999)
- Illustrates how vegetation pumps water stored within profile.

Basic Model Requirements

- Must simulate unsaturated flow in a rigorous manner (i.e., must solve Richards' equation).
- Must include a surface boundary simulating soil-atmosphere interactions (precipitation, infiltration, evaporation, runoff).
- Must include root water uptake; should be integrated into Richards' equation.
- Must integrate climatic data into the solution.

Modified Richards' Equation

$$\frac{\partial \theta}{\partial t} = \nabla \bullet \left[K_{\Psi} \nabla (z - \Psi) \right] - S$$

$$C_{\psi} \frac{\partial \psi}{\partial t} = \nabla \bullet \left[K_{\psi} \nabla (z - \psi) \right] - S$$

Terms: θ = volumetric water content, t = time, K_{ψ} = hydraulic conductivity, ψ = matric suction, z = vertical coordinate, C_{ψ} = specific water capacity, S = sink term for root water uptake.

Key assumptions: isothermal, no volume change, liquid flow only

What Does Richards' Eqn. Do?

$$\frac{\partial \theta}{\partial t} = \frac{\partial K}{\partial z} - \frac{\partial}{\partial z} \left[K_c \frac{\partial \psi}{\partial z} \right] - S$$

Apply boundary conditions and input meteorological, soil, and vegetation inputs. Run to obtain $\theta(z,t)$

Model Selection

Code	Dimensionality	Source
HYDRUS	1, 2, or 3D	www.pc-progress.com (1D free)
LEACHM	1D	http://www.flinders.edu.au/science engineerin g/environment/our-school/staff- postgrads/academic-staff/hutson- john/leachm.cfm
SVFLUX	1, 2, or 3D	www.soilvision.com
UNSAT-H	1D	DOS v3.01 (free): http://hydrology.pnl.gov/resources/unsat h/unsath.asp Windows v2.04 (free): https://mywebspace.wisc.edu/chbenson/WinUN SATH/
VADOSE/ W	1D or 2D	www.geo-slope.ca

More Information on Models

Bohnhoff, G., Ogorzalek, A., Benson, C., Shackelford, C., and Apiwantragoon, P. (2009), Field Data and Water-Balance Predictions for a Monolithic Cover in a Semiarid Climate, J. Geotech. and Geoenvironmental Eng., 135(3), 333-348.

Ogorzalek, A., Bohnhoff, G., Shackelford, C., Benson, C., and Apiwantragoon, P. (2007), Comparison of Field Data and Water-Balance Predictions for a Capillary Barrier Cover." J. Geotech. and Geoenvironmental Eng., 134(4), 470-486.

Input Data Collection

- Meteorological data precipitation, temperature, humidity, solar radiation, wind speed, cloud cover etc.
- -Plant properties growing season, root depth vs. time, root density function, leaf area index, plant limiting function parameters (local NRCS).
- -Geometry profile of cover.
- -Soil properties saturated hydraulic conductivity, SWCC parameters (measure in lab).

Meteorological Data

- Data requirements:
 - Precipitation
 - Temperature
 - Relative humidity
 - Wind speed
 - Diffuse solar radiation
 - Cloud cover
- Most projects have incomplete data sets and require that data be supplemented from other sources. Data are listed above in order of importance

Sources of Meteorological Data - 1

NOAA – Regional Climate Centers http://www.wrcc.dri.edu/rcc.html

- Good historical precipitation data, but requires processing before use.
- Usually more than one station in close proximity, which is good for verification.
- Other data (temperature, solar, etc.) can be limited.
- Fee may be required.

Sources of Meteorological Data - 2

- Bureau of Reclamation Agrimet
- http://www.usbr.gov/pn/agrimet/wxdata.html
 - Contains nearly all required input data
 - Limited in duration and location (PNW)
- Texas Solar Radiation Data
 http://www.me.utexas.edu/~solarlab/tsrdb/tsrdb.html
- National Solar Radiation Data
 http://rredc.nrel.gov/solar/old_data/nsrdb/

Incomplete Precipitation Data

- Find meteorological station as close to site as practical.
- Compare on-site or local incomplete data with more detailed data from another meteorological station.
 - Station data has higher precipitation, use as is as surrogate or replacement for missing data
 - Station data has lower precipitation, determine scaling factor (average annual, seasonal, monthly) and increase proportionally.
- If necessary, test surrogate data by conducting comparative simulations using actual and surrogate data for period during which both available.

Precipitation – Surrogate Data Example

Surrogate site consistently has more precipitation. Use surrogate data in lieu of site specific data.

Humidity Data

- No long-term data for humidity. Use on-site data, but short record.
- Humidity wellbehaved temporally.
- Use daily mean record as surrogate for missing data.

Solar Radiation Data

- No nearby data for solar radiation.
- Solar is very well behaved. Mean trend tends to be biased low, except in fall.
- Use daily mean record as surrogate.

Wind Speed Data

- No nearby data for wind speed radiation.
- Wind is well behaved. Mean trend tends to be biased low (misses highs more than lows), conservative.
 - Use daily mean record as surrogate.

Dew Point and Relative Humidity

 Dew point temperature (T_d) is temperature at which water vapor would be saturated. The vapor pressure (kPa) at dew point (°C) is:

$$e = 0.611 exp \left[\frac{17.27 T_d}{T_d + 237.3} \right]$$

 The saturated vapor pressure at existing temperature T is:

$$e_s = 0.611 exp \left[\frac{17.27 T}{T + 237.3} \right]$$

• The relative humidity, RH = $100 \times (e/e_s)$

Cloud Cover Fractions (c)

Overcast: 1.0

• Broken: 0.6-0.9

• Scattered: 0.4 to 0.6

• Few: 0.1-0.4

• Clear: 0.0

Plant Properties Required for Input

- Growing season (start, end)
- Leaf area index vs. time
- Plant water stress parameters
 - Anerobiosis point
 - Limiting point
 - Wilting point
- Coverage (% bare area)
- Root depth and density function
- Root growth/extension vs. time

Where to Find Plant Properties

 US Natural Resources Conservation Service (NRCS)

Home: http://www.nrcs.usda.gov/

Plants Database: http://plants.usda.gov/

Winkler Database (1999)
 https://mywebspace.wisc.edu/chbenson/
 Winkler/

LAI vs. Time

- Use approximate linear function
- Ramp up to peak linearly during first 30 d.
- Ramp down to zero during final 30 d
- Maintain constant LAI between.

Partitioning of PE and PT from LAI

PET to PE-PT Partitioning Used in Most Models

- PT-PE split sensitive when LAI < 0.5
- Modest sensitivity for LAI > 0.5

$$PT + PE = PET$$

Water Stress and Plant Limiting Function

- Anerobiosis point:1-5 kPa
- Limiting point:
 - > Humid: 0.8 MPa
 - > Arid: 1-2 MPa
- Wilting point:
 - > Humid: 1.5 MPa
 - > Arid: 4-6 MPa

Sensitivity to Leaf Area Index

Maximum Percolation Rate for Wettest Year Repeated 5x

LAI Used

- \rightarrow Low = 0.7
- \rightarrow Med = 1.4
- \rightarrow High = 5.2
- Not particularly sensitive for reasonable LAI.

Sensitivity to Coverage (or Bare Area)

Maximum Percolation Rate for Wettest Year Repeated 5x

- Little sensitivity when coverage
 > 50%
- Modest sensitivity when coverage is 25-50%.
- Bare area = 100- % coverage.

Sensitivity to Coverage (or Bare Area)

Maximum Percolation Rate for Wettest Year Repeated 5x

- Sensitivity

 increases as
 required
 percolation
 rate diminishes
- Low to modest sensitivity when coverage
 50% (Bare area > 50%).

Sensitivity to Root Depth & Density Function

- PET partitioned into PE & PT. PT applied to roots in proportion to density.
- Shallower RLD applies more PT to shallow depths.

Sensitivity to Root Depth & Density Function

- Not very sensitive to RLD provided roots extend through depth of cover.
- Using typical RLD from Winkler acceptable.

Summary Remarks on Plant Properties

- Predictions more sensitive to presence of vegetation than details of vegetation.
- Reflects simplicity of vegetation algorithms rather than importance of vegetation.
- Can use typical properties without too much error.

Measuring Plant Parameters

- Select analog site with similar soils and vegetation
- Evaluate distribution of species and coverage (plant ecologist provide support)
- Measure LAI as a function of time
- Measure RLD
- Measure wilting point

Benson, C., Thorstad, P., Jo, H., and Rock, S. (2007), Hydraulic Performance of Geosynthetic Clay Liners in a Landfill Final Cover, *J. Geotech. and Geoenvironmental Eng.*, 133(7), 814-827.

Soil Hydraulic Properties

- Saturated hydraulic conductivity: usually in 10⁻⁵ cm/s range for storage layer at depths below 300 mm. Shallower 10⁻³ to 10⁻⁴ cm/s
- van Genuchten's α : 0.01 to 0.1 kPa⁻¹
- van Genuchten's n: 1.2 to 1.4
- Saturated water content, θ_s : 0.35 to 0.45 ($\gamma_d \approx 15.5 \text{ kN/m}^3$)
- Residual water content, θ_r : set at zero, < 0.05
- Pore interaction term:
 - clean coarse soils = 0.5
 - fine-textured soils for storage layer = -2

Accounting for Pedogenesis - K_s

Benson, C., Sawangsuriya, A., Trzebiatowski, B., and Albright W. (2007), Post-Construction Changes in the Hydraulic Properties of Water Balance Cover Soils, *J. Geotech. and Geoenvironmental Eng.*, 133(4), 349-359.

Accounting for Pedogenesis - α

From lab, α = 0.005 kPa⁻¹

$$\alpha_p/\alpha_o = 3.1$$

$$\alpha_{\rm p}$$
 = 3.1 x 0.005

$$\alpha_{\rm p} = 0.016 \text{ kPa}^{-1}$$

Accounting for Pedogenesis - n

From lab, n = 1.60

$$n_{p}/n_{o} = 0.85$$

$$n_p = 0.85 \times 1.60$$

$$n_n = 1.36$$

Using Models to Develop QA Requirements

- Evaluated range of samples from borrow source investigation representing range of fines content.
- Developed relationships between SWCC properties and particle size characteristics.
- Ran performance evaluations using each set of hydraulic properties. Identified soils that provided acceptable percolation, and segregated by % fines.

Effect of Fines Content on α

Why is percolation sensitive to α ?

- Evaluated range of samples from borrow source.
- Simulations for design year 5x back to back.
- Found percolation rate was excessive for soils with < 35% fines.

Effect of Fines Content on n

- No significant systematic relationship between n and fines content.
- All but one soil approximately same n.

Waste Hydraulic Properties

Near surface:

- Ks $\approx 10^{-3}$ to 10^{-1} cm/s
- van Genuchten's α : 5 kPa⁻¹
- van Genuchten's n:2.0
- $\theta_s = 0.75, \theta_r = 0.25$
- Pore interaction term:-1.5

Reality Check: Predictions Consistent with Field Data?

$$log P_r = 0.33 + 0.0205 P_a^{1/2} - 0.0018 (1804 - 2.27 RH_a) + 0.494 P_{ss} + 0.111 P_a^{1/2} S_p + 0.0019 P_a P/PET_a - 0.73 S_a/S_r$$

```
P<sub>a</sub> = annual precipitation
```

RH_a = annual cumulative relative humidity

P_{ss} = snow and spring rain (categorical, 1-4)

S_p = seasonality of precipitation (categorical,1 for F-W sites and 0 for S-S sites)

 $P/PET_a = ratio of annual precip. to annual PET$

 S_a/S_r = ratio available to required storage capacities

Verification of Regression Model

P_r Predicted from Regression Model ($S_a/S_r = 1$)

